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Abstract: Intensive studies are being conducted to develop effective prevention and treatment strategies for the Covid-

19 pandemic. During a pandemic, it is vital to act quickly to develop a defense strategy. It usually takes a long time 

to develop a preventive vaccine, and immediate drug development is needed to reduce the impact of the rapidly 

increasing Covid-19 pandemic. This study aimed to design an effective and potent drug by selecting remdesivir, a 

nucleotide analog prodrug that inhibits viral RNA polymerases and is known to be active against Covid-19. 

Remdesivir is metabolized into active nucleoside triphosphate (NTP) by the host; this metabolite competes with 

adenosine triphosphate (ATP) for incorporation into the nascent RNA strand. Therefore, molecular docking studies 

have been conducted based on NTP (the active form of remdesivir), and a target molecule that could be effective 

against Covid-19 has been designed. 
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1. Introduction 

Coronaviruses (CoVs) are some of the major pathogens for humans.1 It is known that coronaviruses 

December 2019 as a respiratory infection identified in Wuhan, China. The World Health Organization 

(WHO) declared the new coronavirus outbreak an international public health emergency in January 2020 

and declared it a pandemic in March 2020.2,3  

CoVs cause a range of problems, from simple upper respiratory tract infections to serious lung 

diseases such as severe acute respiratory syndrome, which can be fatal. According to data reported by the 

WHO, Covid-19 spread to 216 countries in August 2020, causing approximately 19 million people to 

become ill and approximately 720 thousand to die.3,4 Covid-19 progresses with serious morbidity and 

mortality, and the virus spread globally in a very short time. There is no effective medicine or preventive 

vaccine against SARS-CoV-2. Therefore, developing an effective drug has become a necessity. 

Among the basic mechanisms to prevent replication of SARS-CoV-2, one of the most effective 

methods is the inhibition of RNA-dependent RNA polymerase enzymes involved in viral replication. The 

development of inhibitory drugs against these enzymes is an extremely important focus of research. The 

effect of many RNA polymerase inhibitors against Covid-19 is still under investigation.5,6 Remdesivir, a 

nucleotide analog prodrug that inhibits viral RNA polymerases, has been reported to show in vitro activity 

against SARS-CoV-2. In addition, the European Union (EU) Commission approves the use of remdesivir 

in the treatment of Covid-19 patients.7,8 

Currently, there is no vaccine or a specific, effective antiviral treatment option for Covid-19. 

Therefore, global surveillance of Covid-19 patients is urgently needed. Although studies on the use of 

existing antivirals and their combined use in the treatment of Covid-19 continue, new therapeutic drug 

research is also ongoing, and studies are needed to develop and determine the effectiveness of these new 

drugs.9-11 
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Screening and redesigning molecules with specific activity as drug candidates for certain diseases 

or pathogens is a reliable, time-saving, and cost-saving method. Designing molecules with, which have a 

very large host network, cause respiratory tract infections in humans. CoVs, which are enveloped, positive-

polarity, and single-stranded RNA viruses, have a non-segmented RNA genome. The virion has four main 

structural proteins: Nucleocapsid (N) protein, transmembrane (M) protein, envelope (E) protein, and Spike 

(S) protein (Figure 1).12 Until 2019, there were four CoVs (HCoV‐229E, HCoV‐OC43, HCoV-NL63, and 

HCoV-HKU1) that could be transmitted to humans and cause respiratory diseases. These viruses generally 

cause only mild upper respiratory tract diseases but, in rare cases, can cause serious infections in infants, 

young children, and the elderly. However, the SARS‐CoV and MERS‐CoV viruses in the CoV family can 

infect the lower respiratory tract and cause severe respiratory syndrome in humans.13 

The new type of coronavirus (SARS-CoV-2), which is the cause of Covid-19 disease, has become 

a significant, global problem in a very short time. Covid-19 first appeared in the world. 

Computer programs is one of the most important methods in developing new drug candidates. 

Today, the virtual molecule scanning method is frequently used in drug development.14 This method can 

also be used in redesigning molecules for the treatment of Covid-19. Methods like computer-aided drug 

design (CADD) are of great importance in drug development for emergency situations such as Covid-19, 

where there the urgency of the situation is underscored by a rapid increase in deaths. CADD methodologies 

play an important role in the discovery of promising drug candidates. This method limits the use of animal 

models in pharmacological research, reduces the cost of drug discovery, and aids the rational design of 

new, targeted, and safe drug candidates. It also provides information about absorption, distribution, 

metabolism, excretion, and toxicity (ADMET) values which are important for drug molecules in terms of 

drug likeness.15-17 In the study it has aimed to design potential drug candidates against SARS-CoV-2 as in-

silico, based on the determination of pharmacophore groups of remdesivir. 

This new, targeted drug design study, which, based on the activity of remdseivir, could be 

effective to treat Covid-19, was carried out using CADD. 

 

2. Experimental 
 

2.1. Creating Virtual Library  

 

In order to develop new, effective compounds against Covid-19, the effectiveness of RNA-

dependent RNA polymerase inhibitors (Ribavirin, Sofosbuvir, Galidesivir, Tenofovir, Remdesivir, 

Telaprevir, Boceprevir, Simeprevir, and Vaniprevir) and RNA protease inhibitors (Amprenavir, 

Atazanavir, and Darunavir), which have different structures, have been investigated.18,19 Various common 

features of these RNA protease and polymerase inhibitors were determined and filtered to reduce the 

number of compounds in the literature and to create a virtual library. RNA polymerase and RNA protease 

inhibitors used in treatment had their molecular weight (MW), log P, polar surface area (PSA) values, 

hydrogen bond acceptor (HBA), and heteroatom numbers calculated. 

The lowest and highest values of these calculated parameters were determined, and a scale was 

created for each parameter. For RNA polymerase inhibitors, the scales were MW: 100-800, log P: 2-6, 

PSA: 40-336, HBA: 9-17, and heteroatom number: 35-55. For proteases, they were MW: 500-800, log P: 

2-6, PSA: 110-180, HBA: 9-15, and heteroatom number: 35-55. Approximately 2,000,000 molecules in the 

ChEMBL database were filtered according to the parameter scales, and approximately 100,000 molecules 

were determined. These molecules were downloaded in structure data file (SDF) format and prepared in 

the LigPrep module of Maestro program to create a virtual library.  

 

2.2. Molecular Docking Studies  

 

The 100,000 identified compounds were prepared using Maestro and the LigPrep module, and 

possible conformers were created. An OPLS 2005 force field was used for minimization. Epik option was 

used to keep the ligand in the correct protonation states in biological conditions. The 7BV2 Protein-Data-

Bank- (PDB) coded protein was downloaded from www.rscb.org for docking studies.20,21 Using Prime 

(Schrödinger, LLC, NY), Impact (Schrödinger, LLC, NY), Epik (Schrödinger, LLC, NY), and Propka 

software, unwanted solvent molecules were cleaned; any missing amino acids, atoms, and hydrogens were 

added; charges were assigned; and orientations of polar hydrogen and water were adjusted in crystal 
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structure. Grid maps were created using the receptor grid generation (Schrödinger, LLC, NY). Each 

molecule docked 100 times in extra precision mode of Glide (Schrödinger, LLC, NY). The five compounds 

with the highest docking score were determined.22-24 

 

2.3. In Silico ADMET Prediction 

 

Various physicochemical parameters estimated the toxicities and drug possibilities of the five target 

molecules using PreADMET, SwissADME web server, and Datawarrior software v4.07.02. The studies 

resulted in defining the some important parameters of the molecules in drug availability like rotatable bonds 

(RB), hydrogen bond acceptor and donor counts (HA and HD), octanol/water partition coefficient (LogP), 

polar surface area (PSA), Lipinski's rule of five, drug likeness score, and mutagenic and carcinogenic 

properties.25-27 

 

3. Results and Discussion  

Remdesivir has a broad spectrum of antivirals, including filoviruses, paramyxoviruses, 

pneumoviruses, and coronaviruses.28,29 Literature reports that remdesivir inhibits all animal and human 

coronaviruses tested, including SARS-CoV-2, and also shows antiviral and clinical effects against Middle 

East respiratory (MERS)-CoV infections.30-32 In order to design a new molecule for the treatment of Covid-

19, the remdesivir molecule used in the treatment was chosen as the lead compound. Remdesivir is 

metabolized into active nucleoside triphosphate (NTP) by the host; this metabolite competes with adenosine 

triphosphate (ATP) for incorporation into the nascent RNA strand. Therefore, molecular docking studies 

have been conducted based on NTP (the active form of remdesivir), and a target molecule that could be 

effective against Covid-19 was designed. The crystal structure of nsp12-nsp-7-nsp8 RNA-dependent RNA 

polymerase (RdRP) complex (PDB ID: 7BV2) was determined as the target protein. In recent studies with 

remdesivir, the protein (PDB ID: 7BV2) was preferred because these studies were carried out using this 

protein (Figure 1). 18-20,34 

One hundred thousand molecules were determined by filtering approximately two million 

compounds in the literature to create a virtual library. Docking studies were conducted using the compounds 

in the virtual library.  

 

 
Figure 1. 2D interaction of NTP at the active site of the 7BV2 PDB-encoded protein 
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While the docking score of NTP was found to be -7,341 kcal/mol, the docking scores of the five 

most active molecules were between -7,554 and -8,695 kcal/mol (Table 1). It is noteworthy that the docking 

scores of compounds 1 and 2 (-8,695 and -8,046, respectively) are higher than the score of NTP. 

Compound 1 has hydrogen bonding with ARG555 and ASP760; hydrophobic interaction with 

VAL557; charged (negative) interaction ASP623 and ASP761; charged (positive) interaction with LYS545; 

and polar interaction with SER682 and THR687 in the active zone of the receptor like NTP. Compound 1 

also has hydrogen bonding with TYR619; hydrophobic interaction with ALA547, ILE548, PRO620, 

TRP617, and CYS813; polar interaction with SER549 and SER814; charged (negative) interaction with 

ASP618 and GLU811; and charged (positive) interaction with LYS621 and ARG836. Compound 2 has 

hydrogen bonding with ASP760; hydrophobic interaction with VAL557 and CYS622; charged (negative) 

interaction ASP623, ASP760, and ASP761; charged (positive) interaction with LYS545; and polar 

interaction with THR687 in the active zone of the receptor like NTP (Figure 2). Compound 2 also has 

hydrogen bonding with SER682 and cation-pi interaction with ARG555. 

 

          Table 1. The docking scores of the five most active compounds   

Compounds   
Docking Scores 

kcal/mol 

1 

 

-8,695 

2 

 

-8,046 

3 

 

-7,892 

4 

 

-7,597 

5 

 

-7,554 
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Figure 2. 2D interaction of compound 1 and compound 2 at the active site of the 7BV2 PDB-encoded protein 

 

 

When the interactions of the five compounds with the best docking scores with the receptor are 

examined, it is thought that their interactions with LYS545, VAL557, ARG555, ASP623, SER682, 

THR687, ASP760, and ASP761 may increase the activity due to their the docking scores. In order to 

develop more active compounds, various modifications have been made on the compound 1 to increase the 

interaction of the most active compound 1 with residues responsible for activity. It has been observed that 

the -NH and -OH groups in the compound 1 structure interact with residues by hydrogen bonding in the 

active site of the target protein. Therefore, eleven new compounds were designed by adding groups that 

can make hydrogen bonds such as -NH2, -OH, and -F to the structure of compound 1 (Figure 3). 
 

 
 

Figure 3. Newly designed derivatives of compound 1 
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Generally, there was no significant change in the docking scores of the other designed compounds 

compared to compound 1. However, the docking score of the compound obtained by adding the -NH2 and 

-OH groups (compound 11) was calculated as -9.746 kcal/mol. When the interaction of compound 11 with 

the receptor was examined, it was determined that the added -NH2 group had two new hydrogen bonds with 

ASP761and GLU811; had two salt bridges with ASP761 and GLU811; and significantly increased the 

docking score (Figure 4). 

 
 

 

Figure 4. 2D interaction of compound 11 at the active site of the 7BV2 PDB-encoded protein 

 

        Table 2. Some predicted toxicological, ADME, and drug-like properties 

Parameters Remdesivir Compound 1 Compound 11 

              Toxicological 

Irritanta High None None 

Reproductive effectsa High None None 

Carcinogenica High None None 

Mutagenica None None None 

hERG inhibitionb Ambiguous  Ambiguous Ambiguous 

CYP450 inhibitionb 3A4 2C9, 2D6 2C9, 2D6 

                    ADME 

Human intestinal 

absorptionb 
Moderately absorbed Well absorbed Well absorbed 

Plasma protein bindingb Weakly bound Strog bound Strog bound 

Caco2 permeabilityb Low  Low  Low  

                 Druglikeness 

Drug‐likeness scorea -21,381 3,711 3,864 

MDDR‐like ruleb Nondrug like Drug like Drug like 

Lipinski's Rule of fiveb Non Suitable Non Suitable Non Suitable 
a Determined by datawarrior v4.07.02.   
b Determined by pre-admet (https://preadmet.bmdrc.kr) 

https://preadmet.bmdrc.kr/
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Although the synthesized compounds have activity, they must have appropriate pharmacokinetic 

properties and have no toxic properties in order to be medicines for clinical use. Therefore, it is important 

to determine the properties of in-silico ADMET before synthesizing the compounds expected to have 

activity. The ADMET properties of the reference molecule remdesivir, compound 1 determined as a result 

of literature review, and compound 11 determined as a target molecule are given in Table 2. 

Compound 11 is suitable for MDDR-like rules (No. Rings ≥ 3, No. Rigid bonds ≥ 18, and No. 

Rotatable bonds ≥ 6), but it is not suitable for Lipinski's rule of five (hydrogen bond donors ≤ 5, hydrogen 

bond acceptor ≤ 10, molecular weight ≤ 500, and CLogP ≤ 5) since its molecular mass is more than 500 

daltons and it has more than five hydrogen bond donors. However, with respect to the toxicological 

parameters, compound 11 has no estimated mutagenic, carcinogenic, irritant, or reproductive effects. In the 

case of drug-like parameters, compound 11 can be considered as a potential oral drug, because it is well-

absorbed in the human intestine. The drug likeness value of compound 11 was calculated to be 3,864. Since 

the drug similarity values of 80% of the drugs are positive, compound 11 can be considered a candidate 

drug. 

When these properties were examined, it was seen that the toxic properties of compound 11 were 

more appropriate than remdesivir and compound 1. In addition, the ADME properties of compound 11 

were determined to be suitable for drug likeness. 
 

4. Conclusion 

 

In this study, various in-silico studies such as developing molecular docking and the determination 

of ADMET properties were carried out in order to design an effective molecule against Covid-19. In this 

context, the compounds in the literature were scanned and the compounds expected to show the best activity 

against Covid-19 were determined (compounds 1 and 2). In order to design a newer, more active compound, 

various modifications were made on this compound 1 to reach the target molecule (compound 11). In in-

silico ADMET studies, it was determined that the target compound did not have predicted toxicity and its 

physicochemical properties were appropriate. Future studies will aim to synthesize the most active 

compound as 11 derivatives, examine their activities, and develop new compounds against Covid-19. 
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